
CPE 470 - Simulators

Why Simulation?

● We will spend most of our design time
in simulation
○ Unlike FPGA development, where

deployment time is short
● Will simulate across multiple steps of

the process
○ Using multiple simulators

● More than just wave forms
○ We use fully separate simulators

and waveform viewers
○ Most simulations too complex for

human eye analysis
○ Use assert statements to do

testing programatically

Levels of Simulation
● Behavioral Modeling

○ Build design in higher level language like
Python

● Logic Simulation
○ HDL-based simulation
○ Using testbenches to test your RTL

● Gate Level Simulation
○ Run testbenches against synthesized and

laid-out design
○ Uses gate-level models from PDK

● Transistor-Level Simulation
○ Uses spice tools (ngspice)
○ Uses transistor-level models from PDK
○ Slow

● E&M Simulation
○ Electromagnetic simulation
○ Extremely computationally intensive
○ Often used for wireless and RF chips

Cycle vs. Event Simulators

Event Driven Cycle Accurate Simulator

When do transitions occur? Any Time Clock Edge

Calculations per Clock Cycle Many One

Able to catch timing issues? Sometimes No

Simulation Speed Slow Fast

Industry Simulators: “The Big 3”
● Industry is dominated by 3 main simulators:

○ QuestaSim originally by Mentor Graphics, bought by Siemens
○ Cadence and Synopsys have competing simulators built into

their EDA environments
○ Vivado xsim is used primarily only for FPGA applications

QuestaSim

ModelSim VCS
Xcelium xsim

Verilator

● Doubles as linter
○ Tends to be strictest on syntax
○ Enforces syntax such as:

■ All cases having a default
■ <= vs = in different blocks

● Fastest Simulator
○ Multi-threading support
○ Compiled simulator

■ Turns your system verilog into C++ model
■ Compiles into high speed binary

Glossary
Linter: a static code analysis tool
used to syntax errors

Verilator Tradeoffs
● Binary

○ All signals are 0 or 1
○ Assumes all unknown signals are 0

■ Cannot find uninitialized states
○ Does not support X or Z values for signals

■ Does support Tri-State signals
■ Converts tri-state to two-state

● Cycle Simulator by default
○ Only simulates between clock edges

■ No delays, ie: #1
○ Can add --timing flag to add delay

support at the cost of performance
■ This enables IEEE compliant scheduler

Glossary
X: signal is unknown
Z: signal is in High Z or high
impedance, meaning it is not
actively being driven

Verilator - Industry Use
● Often used as a secondary simulator

○ Verilator’s high speed makes it really good for
system-level tests

○ Running firmware

● Used for shipping software models of a device
○ RTL → C++ → Binary
○ Provide end users with emulated software model

■ without exposing intellectual property
○ Can interact with external code/drivers

■ VPI enables interactions with C code
■ DPI enables interactions with other

languages

Glossary
VPI: Verification Procedural Interface
DPI: Direct Programming Interface

Icarus Verilog
iverilog

● Slower, Correctness-focused simulator
● 4-state Simulator

○ 0, 1, X, Z
● Event Driven

○ Intended to be IEEE compliant
○ By default supports delays

● Originally built for only verilog, with system verilog
added later

● Developed primarily by one person
○ Stephen Williams

Simulator Differences
● Icarus verilog will catch initialization issues that verilator

will not catch
● Verilator can make it easier to past tests

○ False sense of security
○ Need icarus to catch those mistakes

● Make sure to initialize your clocks to 0

Race Conditions

- Race Conditions can occur when using blocking
assignment (=) on a clock edge:
- reading the old value or the updated value?
- In this example: When basket gets

calculated, will it use the new or old dunk?
- Always use a non-blocking assignment (<=) to

drive simulator signals on clock edges
- Different simulators can handle race

conditions differently
- Using multiple allows catching and fixing

these problems.

Glossary
Race Condition: unpredictable
outcome due to access of shared
resource

Scope

● We are used to working in the Vivado environment
○ Highly Permissive
○ Does not enforce syntax very strongly

■ <= or = in an initial block? Who cares
■ Incomplete case? Why not
■ Bit widths don’t match? I’ll try my best

Scope

● Icarus Verilog is stricter
than vivado

● We will be working within
the System Verilog
IEEE-2012 Spec

● All of our code must be
compliant

Scope

● Verilator is the strictest
● Enforces best practices
● Mostly overlaps iverilog

Scope

● Next time we
will talk about
synthesis

Compliance
Here are some best practices to help you succeed:

● Files named as <module name>.sv, one file per module
● Avoid fancier system verilog features where possible

○ ❌Interfaces
○ ❌Modports
○ ❌Multidimensional inputs/outputs

■ ❌input [32:0] array [32:0];
● Separate combinational and sequential elements

○ Keep logic in combinational
○ Do next-state assignment in sequential

● Use consistent timescales across modules

References
● https://steveicarus.github.io/iverilog/
● https://www.veripool.org/verilator/
● https://en.wikipedia.org/wiki/Logic_simulation
● https://ieeexplore.ieee.org/document/6469140
● https://blogs.sw.siemens.com/verificationhorizons/2020/08/13/systemveri

log-race-condition-challenge-responses/
●

https://steveicarus.github.io/iverilog/
https://www.veripool.org/verilator/
https://en.wikipedia.org/wiki/Logic_simulation
https://ieeexplore.ieee.org/document/6469140
https://blogs.sw.siemens.com/verificationhorizons/2020/08/13/systemverilog-race-condition-challenge-responses/
https://blogs.sw.siemens.com/verificationhorizons/2020/08/13/systemverilog-race-condition-challenge-responses/

